N-Alkylated Aminoacyl sulfamoyladenosines as Potential Inhibitors of Aminoacylation Reactions and Microcin C Analogues Containing D-Amino Acids

نویسندگان

  • Gaston H. Vondenhoff
  • Ksenia Pugach
  • Bharat Gadakh
  • Laurence Carlier
  • Jef Rozenski
  • Mathy Froeyen
  • Konstantin Severinov
  • Arthur Van Aerschot
چکیده

Microcin C analogues were recently envisaged as important compounds for the development of novel antibiotics. Two issues that may pose problems to these potential antibiotics are possible acquisition of resistance through acetylation and in vivo instability of the peptide chain. N-methylated aminoacyl sulfamoyladenosines were synthesized to investigate their potential as aminoacyl tRNA synthetase inhibitors and to establish whether these N-alkylated analogues would escape the natural inactivation mechanism via acetylation of the alpha amine. It was shown however, that these compounds are not able to effectively inhibit their respective aminoacyl tRNA synthetase. In addition, we showed that (D)-aspartyl-sulfamoyladenosine (i.e. with a (D)-configuration for the aspartyl moiety), is a potent inhibitor of aspartyl tRNA synthetase. However, we also showed that the inhibitory effect of (D)- aspartyl-sulfamoyladenosine is relatively short-lasting. Microcin C analogues with (D)-amino acids throughout from positions two to six proved inactive. They were shown to be resistant against metabolism by the different peptidases and therefore not able to release the active moiety. This observation could not be reversed by incorporation of (L)-amino acids at position six, showing that none of the available peptidases exhibit endopeptidase activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Adenosine 5'- (Aminoalkyl phosphonates and phosphinates) Analogues of Aminoacyl Adenylates

Translation of the genetic code and protein synthesis from amino acids takes place in the ribosome’s where tRNAs act as key intermediates. Correct translation of genetic information into the specific amino acids is dependent on aminoacyl-tRNA ́s. The synthesis of these is catalyzed by aminoacyl-tRNA synthetase. The aminoacylation reaction, the so-called charging of tRNA is carried out in two ste...

متن کامل

Influence of the aminoacyl-tRNA synthetase inhibitors and the diadenosine-5'-tetraphosphate phosphonate analogues on the catalysis of diadenosyl oligophosphates formation.

Well-known aminoacyl-tRNA synthetase (ARSase) inhibitors, namely the analogues of amino acids and aminoacyl adenylates (aminoalkyl- and aminophosphonyl adenylates with Ki congruent to 0.1 microM) as well as the diadenosine 5',5'''-p1,p4-tetraphosphate (Ap4A) phosphonoanalogues, were for the first time used for the Ap4A biosynthesis regulation. Effects of a set of such compounds on lysyl-, pheny...

متن کامل

Design and Synthesis of Potential Aminoacyl-tRNA Synthetase Inhibitors

Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes present in all living organisms, their catalytic activity is involved in the translation of the genetic code into functional proteins and they are potential targets for anti-infective agents. The first step in the biosynthetic pathway catalysed by aaRSs consists of activation of the corresponding amino acid by the reaction with ATP to for...

متن کامل

Aminoacyl-tRNA synthetases catalyze AMP----ADP----ATP exchange reactions, indicating labile covalent enzyme-amino-acid intermediates.

Aminoacyl-tRNA synthetases (amino acid-tRNA ligases, EC 6.1.1.-) catalyze the aminoacylation of specific amino acids onto their cognate tRNAs with extraordinary accuracy. Recent reports, however, indicate that this class of enzymes may play other roles in cellular metabolism. Several aminoacyl-tRNA synthetases are herein shown to catalyze the AMP----ADP and ADP----ATP exchange reactions (in the...

متن کامل

Role of tRNA amino acid-accepting end in aminoacylation and its quality control

Aminoacyl-tRNA synthetases (aaRSs) are remarkable enzymes that are in charge of the accurate recognition and ligation of amino acids and tRNA molecules. The greatest difficulty in accurate aminoacylation appears to be in discriminating between highly similar amino acids. To reduce mischarging of tRNAs by non-cognate amino acids, aaRSs have evolved an editing activity in a second active site to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013